カトウ光研株式会社

PIVとは

HOME可視化技術の見える化 > PIVとは

流速の計測

昔から流体の流れの速さを測定する方法としてはピトー管や熱線流速計がありますが、ピトー管は管端部の圧力と流体密度から、熱線流速計は熱線表面熱流束から速度を求めます。いずれも別の物理量から速度を導く方法であるのに対して、後述のPIVはトレーサ粒子の変位から速度を直接得るのでシンプルな原理となっています。

またレーザドップラー流速計(LDV, Laser Doppler velocimeter)は、トレーサ粒子にレーザ光を照射し粒子からの散乱光の周波数がドップラー効果によりわずかに変化します。その周波数の変化量が粒子速度に比例することを利用して流速を測定します。高い空間分解能で超低速から超高速まで計測でき校正を取る必要がありませんが、トレーサ粒子が必須であり、濃度が希薄な場合は連続した計測ができず不規則になります。また光の通らない部分は計測ができません。

その他の流速計としては、流れの中に置かれた翼車の回転数が流速に比例することを利用した翼車流速計は、比較的大きな水路や野外での流速測定に用いられます。流体を受ける翼車の形からプロペラ形とカップ形に大別されます。超音波流速計は隔てられた2点間を超音波が伝播する速度が、その間の流体の速度に依存することを利用したもので、主に大気の速度計測に用いられます。超音波ドップラー流速計は流れに追従する粒子に超音波を照射し、その反射波の周波数が粒子速度に応じたドップラー変位を伴うことを利用したもので、不透明な液体を非接触で計測できることが特徴です。

PIVとは

粒子画像流速測定法(Particle Image Velocimetry, PIV)は、流れ場における多点の瞬時速度を非接触で得ることができる流体計測法です。流体に追従する粒子にレーザシートを照射し可視化、これをカメラで撮影しフレーム間の微小時間\(\varDelta t \)における粒子の変位ベクトル\(\varDelta x \)を画像処理により求め、流体の局所速度ベクトル\(\ v \cong \varDelta x / \varDelta t \)を算出します(図1)。流れ場の空間的な構造を把握することができるため、代表的な流体計測法として浸透してきています。カメラ2台を用いて速度3成分の2次元分布を計測するステレオPIV(図2)や、高速度カメラと高繰り返しパルスレーザを用いた高時間分解能PIVなどもあります。


図1

図2

画像処理計測(相関法とPTV)

歴史的にみると、画像処理による計測技術としては、まず自己相関法が使われるようになりました。1枚の画像中に2時刻の粒子像を二重露光により撮影します。次に画像中に検査領域を設定し、その領域中の輝度分布の二次元自己相関関数を求めて粒子間距離を求める方法です。この方法は変位が小さい場合に二時刻の粒子像が重なってしまい計測ができないことや、流れの向きが判別できないことが大きな欠点としてあり、あまり使われなくなりました。 それに対し、相互相関法は連続した二枚の画像にそれぞれ露光した上で検査領域の輝度分布の二次元相互相関関数から粒子変位を求めます。カメラの高速化、高解像度化に伴い、今日のPIVはこの型が主流となっております。

また、粒子追跡法(Particle Tracking Velocimetry, PTV)は、単一の粒子を追跡するラグラジアン的な計測手法です。粒子一つ分が空間的な解像度となるため、微小スケールの乱れを捉えることが可能です。そのため、壁面近傍などせん断の大きい場所の計測に用いられます。同時に追跡する粒子数が増えると二時刻間の粒子の対応付けが困難になるため粒子数をあまり多くできない点と、計測点を格子状にするには補間が必要になる点に注意が必要となります。

相互相関法PIVのアルゴリズム

相互相関法PIVでは、時間的に連続した2画像を得た上で、その1時刻目の画像における微小な領域(検査領域、通常32x32画素程度)内の輝度値分布と2時刻目の画像における領域(探査領域)内の輝度値分布(a)との相互相関関数を求め、その最大値となる変位を検査領域内の粒子群の平均変位ベクトルとして推定します(b)。ここで、相関関数の最大値は常に真の変位に対応するとは限りません。これは検査領域内の粒子が少ない場合や、レーザシート内外への粒子の出入りなどにより、対応する粒子が消失、またはせん断によって粒子パタンが変化することなどに起因します。そこで、画面全体の相関係数分布を探した後に、各計測点の周囲の変位ベクトルの平均あるいはメディアンに最も近い相関係数極大値(最大値とは限らない)を計測点の新しい変位ベクトルとして置き換える方法が採られます。相互相関関数は直接相互相関またはFFTを用いて計算されますが、前者は探査領域を自由に設定でき、計算負荷は高くなります。後者は計算負荷が低いですが、検査領域と探査領域の大きさが等しく、片方が周期境界を有するように演算されるため、移動量が大きくなると対応する粒子が消失し、測定精度が低下します。これを避けるために、相関演算において得られた変位分だけ探査領域を移動し、再度相関演算を行うwindow offsetが用いられます。さらに、検査領域と探査領域を計測点に対して対称に移動すれば、変位が中心差分として求められるので、速度が二次精度で計算できるようになります。FFTを用いる利点は直接相互相関に比較して演算が高速であることですが、両者が同一の結果を得るためには、FFTの検査領域を直接相互相関のそれよりも大きく取り周囲をゼロで埋める「ゼロパディング」を行う必要があるため、必ずしも高速とはなりません。さらに、単純な繰り返し演算を得意とするGPU やCPUのSIMD命令セットを用いる場合には、メモリアクセスが煩雑なFFTよりも、演算が単純な直接相互相関の方が効率的に計算できます。従来では欧米を中心にFFTが使われることが多かったですが、近年では直接相互相関法が日本国内も含めPIVソフトに組み込まれていることが主流となっています。


(a)

(b)

相互相関関数は粒子画像と同様に空間的に離散化されているため、求められる変位ベクトルは±0.5画素の誤差を伴います。そこで、離散化された相関関数に二次元正規分布を内挿して連続関数とした上で変位ベクトルを求めることで、誤差を0.1画素程度に減少させる手法(サブピクセル補間)がとられます。ただし、粒子像の大きさが約2画素を下回るときには真の変位量と推定される変位量の関係が線形にならず、粒子移動量の確率密度関数が整数移動量近傍で高くなり偏りが生じますので(ピークロッキング)、粒子像の大きさには十分注意する必要があります。

高精度化・高解像度化のための種々の方法

流れのせん断により検査領域の粒子パタンに対して探査領域の粒子パタンが歪み、相関係数分布に明瞭なピークが現れない場合があります。例えば、相関係数極大部分の幅はせん断率が大きいほど広がり、極大値の位置検出精度は低下します。その解決方法としてCorrelation-Based Correction(CBC)が挙げられます。これは、計測点の近傍に互いに1/4程度重なり合う2つの検査領域を設け、それぞれの相関係数分布を求めた後、両者を乗算します。その結果、双方の同じ場所にあるピークは大きくなり、他のノイズピークは小さくなることでS/N比が上がります。また、極大部分はせん断の大きさによらず狭く、結果として計測精度が向上します。

検査領域は有限な大きさであるため、その大きさよりも小さな渦運動を解像することはできません。例えば、空間方向に正弦波的に変動する流れが存在する場合に、計測される空間振幅が真の振幅の90%となる検査領域サイズは流れの変動波長の1/4程度であり、それ以下の波長の振幅はより過小に計測されます。これは速度計測の精度を低下させる重大な要因であるとともに、渦度や速度勾配テンソルなどの空間微分量を求める際にも大きな誤差要因となり得ます。空間解像度を向上させるには、検査領域サイズを小さくすれば可能ですが、安易な検査領域サイズの減少は相関係数分布のS/N比を低下させ、正しい粒子対応付けを困難にします。そこで、再帰的相関法(Recursive PIV)が提案されました。これは、32x32画素程度の検査領域で変位ベクトル分布を算出したのち、検査領域サイズを半分程度に減少させて再度変位ベクトル分布を求めます。このとき、2回目の処理の探査領域は初回に得られた変位ベクトルに従って小さくすることが可能であり、前述のCBCとの併用で粒子の誤った対応付けを相当減らすことができます。

また,検査領域と探査領域の間の粒子像の変形を無くすために、検査領域の粒子像を変形させて相関関数を求める方法もよく用いられます。画像全体の変位ベクトルを算出した後に、そのベクトル分布から局所的な歪みテンソルを求め、それに従って検査領域を変形して再度変位ベクトルを算出します。これを繰り返すことでせん断の大きな流れも精度良く計測することが可能となります。前述の再帰的相関法と組み合わせて検査領域サイズを小さくしていけば空間解像度の向上も期待できます。

局所的な変形ではなく、画像全体を変形する方法(全画像変形Window Deformation Iterative Multi-grid)も考案されています。例えば、第1時刻の画像を、初回に得られた変位ベクトル分布に従って局所的かつ全域的に変形して再度変位ベクトルを求めます。この操作を、変形された第1時刻の画像と元のままである第2時刻の画像が同一の画像になるまで、すなわち変位ベクトルがゼロになるまで繰り返せば、画像の変形量から直接粒子の変位が求められます。しかしながら、この方法は繰り返し計算の途中で発生したエラーが伝播・増大する可能性があります。これを避けるため、各回の変位ベクトル分布を検査領域内で平均し、収束性を高める工夫が必要となります。

検査領域サイズを究極的に小さくする場合には相関係数分布をアンサンブル平均する方法が採られます(アンサンブル相関法Ensemble Correlation)。検査領域サイズが小さくなると相関係数分布にノイズが増えますが、多時刻の画像から得られた多数の相関係数分布をアンサンブル平均すればランダムノイズは消失し極大ピークのみが得られます。流れが層流であれば極めて高い解像度で速度分布を計測することができるようになります。乱流の場合には速度変動により平均相関係数分布の極大が広がると共に、速度確率密度分布の偏りに伴って非対称になり得るため、相関係数最大値位置が速度の平均値に一致することは保証されなくなります。


『高機能流体解析ソフトFlowExpert』については上述の高精度化・高解像度化のための様々なアルゴリズムを搭載した実用的なソフトウェアとなっております。PIV解析については、トレーサ粒子、カメラ、レーザシート光源などを用いて画像処理に適した粒子画像を取得することから始まります。各コンポーネントをお客様のご要望に合わせ最適な計測システムを構成しご案内させて頂いております。計測対象の流れ場に適したアルゴリズムであるか、測定精度や解像度は十分であるかなど、弊社スタッフまでお気軽にお尋ねください。

関連製品

FlowExpert2D2C
FlowExpert2D2C
超高速演算と直感操作のUIを実現した高精度流体解析ソフト
FlowExpert2D3C
FlowExpert2D3C
カメラ2台のステレオ撮影による速度3成分流体解析ソフト
PIV LaserPIV LaserPIV Laser
水流や気流などの流れ場を可視化する流体評価の基本ツール
USB高速度カメラ K5 USB高速度カメラ K5
高速流体に対応した撮影速度を誇る超高感度USBモデル
レンタルのご案内
カタログダウンロード